partirdezero/home/views.py

162 lines
6 KiB
Python

from django.shortcuts import render, get_object_or_404
from django.contrib.auth.decorators import user_passes_test
from django.utils import timezone
from django.db.models import Count
from django.views.decorators.cache import cache_page
from django.contrib.auth.models import User
from courses.models import Course, Lesson
from blog.models import Post
from progression.models import Progression
import json
def home(request):
courses = Course.objects.order_by('-created_at')[:6]
return render(request, 'home.html', {'courses': courses})
def premium(request, course_id):
"""Landing page présentant les avantages du Premium."""
course = get_object_or_404(Course, pk=course_id)
return render(request, 'premium.html', {'course': course})
# 15 minutes de cache sur la page complète (sauf si décochée plus tard pour des blocs en direct)
@user_passes_test(lambda u: u.is_superuser)
@cache_page(60 * 15)
def stats_dashboard(request):
""" Tableau de bord statistiques réservé aux superadministrateurs.
Périodes supportées: 7, 30, 90, 180 jours (GET param 'p'). """
# Période
period_options = [7, 30, 90, 180]
try:
p = int(request.GET.get('p', 30))
except ValueError:
p = 30
if p not in period_options:
p = 30
now = timezone.now()
start_dt = now - timezone.timedelta(days=p-1) # inclut aujourd'hui
# Utilisateurs
total_users = User.objects.count()
new_users_qs = User.objects.filter(date_joined__date__gte=start_dt.date(), date_joined__date__lte=now.date())
# Séries quotidiennes nouveaux utilisateurs
new_users_by_day = (
new_users_qs
.extra(select={'day': "date(date_joined)"})
.values('day')
.annotate(c=Count('id'))
)
# Activité approximée via Progression mise à jour
active_users_qs = (
Progression.objects.filter(updated_at__date__gte=start_dt.date(), updated_at__date__lte=now.date())
.values('user').distinct()
)
active_users_count = active_users_qs.count()
# Cours
total_courses = Course.objects.count()
total_courses_enabled = Course.objects.filter(enable=True).count()
new_courses_by_day = (
Course.objects.filter(created_at__date__gte=start_dt.date(), created_at__date__lte=now.date())
.extra(select={'day': "date(created_at)"})
.values('day').annotate(c=Count('id'))
)
# Leçons
total_lessons = Lesson.objects.count()
# Achèvements de leçons (via table de liaison M2M)
through = Progression.completed_lessons.through
lesson_completions_by_day = (
through.objects.filter(
progression__updated_at__date__gte=start_dt.date(),
progression__updated_at__date__lte=now.date(),
)
.extra(select={'day': "date(progression_updated_at)"}) if 'progression_updated_at' in [f.name for f in through._meta.fields]
else through.objects.extra(select={'day': "date(created_at)"}) # fallback si champs créé n'existe pas
)
# Si la table M2M n'a pas de timestamps, on utilisera updated_at de Progression pour l'activité par jour
# donc on refait une série quotidienne d'activité progression
progress_activity_by_day = (
Progression.objects.filter(updated_at__date__gte=start_dt.date(), updated_at__date__lte=now.date())
.extra(select={'day': "date(updated_at)"})
.values('day').annotate(c=Count('id'))
)
# Blog
total_posts = Post.objects.count()
new_posts_by_day = (
Post.objects.filter(created_at__date__gte=start_dt.date(), created_at__date__lte=now.date())
.extra(select={'day': "date(created_at)"})
.values('day').annotate(c=Count('id'))
)
# Revenus/Paiements & Technique (placeholders faute de sources)
revenus_disponibles = False
technique_disponible = False
# Helper pour avoir toutes les dates de la période et remplir les trous
def build_series_dict(qs, date_key='day', count_key='c'):
counts = {str(item[date_key]): item[count_key] for item in qs}
days = []
values = []
d = start_dt.date()
while d <= now.date():
key = str(d)
days.append(key)
values.append(counts.get(key, 0))
d += timezone.timedelta(days=1)
return days, values
days_users, values_new_users = build_series_dict(new_users_by_day)
days_courses, values_new_courses = build_series_dict(new_courses_by_day)
days_posts, values_new_posts = build_series_dict(new_posts_by_day)
days_activity, values_activity = build_series_dict(progress_activity_by_day)
# Tables simples (jour, valeur)
new_users_table = list(zip(days_users, values_new_users))
new_courses_table = list(zip(days_courses, values_new_courses))
context = {
'period_options': period_options,
'p': p,
'start_date': start_dt.date(),
'end_date': now.date(),
# KPI
'kpi': {
'total_users': total_users,
'new_users_period': sum(values_new_users),
'active_users_period': active_users_count,
'total_courses': total_courses,
'courses_enabled': total_courses_enabled,
'total_lessons': total_lessons,
'total_posts': total_posts,
},
# Séries pour graphiques
'series': {
'days': days_users, # mêmes intervalles pour tous
'new_users': values_new_users,
'new_courses': values_new_courses,
'new_posts': values_new_posts,
'activity_progress': values_activity,
},
# Disponibilité des sections
'revenus_disponibles': revenus_disponibles,
'technique_disponible': technique_disponible,
# Tables
'new_users_table': new_users_table,
'new_courses_table': new_courses_table,
}
# Sérialisation JSON pour Chart.js
context['series_json'] = json.dumps(context['series'])
context['labels_json'] = json.dumps(context['series']['days'])
return render(request, 'home/stats_dashboard.html', context)