Ajout de la vue stats_charts avec graphiques détaillés pour les superadministrateurs, mise à jour des templates et des routes associées, et configuration supplémentaire pour l'email backend.

This commit is contained in:
mrtoine 2025-12-16 10:48:12 +01:00
parent 083af6f9d4
commit 7869abf441
4 changed files with 102 additions and 1 deletions

View file

@ -199,3 +199,97 @@ def stats_dashboard(request):
context['labels_json'] = json.dumps(context['series']['days'])
return render(request, 'home/stats_dashboard.html', context)
@user_passes_test(lambda u: u.is_superuser)
@cache_page(60 * 15)
def stats_charts(request):
"""Page dédiée aux graphiques (réservée superadmins)."""
# Période
period_options = [7, 30, 90, 180]
try:
p = int(request.GET.get('p', 30))
except ValueError:
p = 30
if p not in period_options:
p = 30
now = timezone.now()
start_dt = now - timezone.timedelta(days=p-1)
period_start_date = start_dt.date()
period_end_date = now.date()
# Trafic par jour (visiteurs uniques)
visits_qs = (
Visit.objects
.filter(date__gte=period_start_date, date__lte=period_end_date)
.values('date')
.annotate(c=Count('visitor_id', distinct=True))
.order_by('date')
)
# Conversions par jour (visiteurs devenus utilisateurs)
conversions_qs = (
Visit.objects
.filter(
became_user_at__isnull=False,
became_user_at__date__gte=period_start_date,
became_user_at__date__lte=period_end_date,
)
.extra(select={'day': "date(became_user_at)"})
.values('day')
.annotate(c=Count('visitor_id', distinct=True))
.order_by('day')
)
def build_series_dict(qs, date_key='date', count_key='c'):
counts = {str(item[date_key]): item[count_key] for item in qs}
days = []
values = []
d = period_start_date
while d <= period_end_date:
key = str(d)
days.append(key)
values.append(counts.get(key, 0))
d += timezone.timedelta(days=1)
return days, values
labels, visitors_series = build_series_dict(visits_qs, date_key='date')
_, conversions_series = build_series_dict(conversions_qs, date_key='day')
# Sources & Pays (sur la période)
period_visits = Visit.objects.filter(date__gte=period_start_date, date__lte=period_end_date)
top_sources_qs = (
period_visits
.values('source')
.annotate(c=Count('visitor_id', distinct=True))
.order_by('-c')[:10]
)
top_countries_qs = (
period_visits
.exclude(country='')
.values('country')
.annotate(c=Count('visitor_id', distinct=True))
.order_by('-c')[:10]
)
sources_labels = [(row['source'] or 'Direct/Unknown') for row in top_sources_qs]
sources_values = [row['c'] for row in top_sources_qs]
countries_labels = [row['country'] for row in top_countries_qs]
countries_values = [row['c'] for row in top_countries_qs]
context = {
'period_options': period_options,
'p': p,
'start_date': period_start_date,
'end_date': period_end_date,
'labels_json': json.dumps(labels),
'visitors_series_json': json.dumps(visitors_series),
'conversions_series_json': json.dumps(conversions_series),
'sources_labels_json': json.dumps(sources_labels),
'sources_values_json': json.dumps(sources_values),
'countries_labels_json': json.dumps(countries_labels),
'countries_values_json': json.dumps(countries_values),
}
return render(request, 'home/stats_charts.html', context)